On the Hyers–Ulam–Rassias stability of an additive functional equation in quasi-Banach spaces
نویسندگان
چکیده
منابع مشابه
On the Stability of a Parametric Additive Functional Equation in Quasi-Banach Spaces
and Applied Analysis 3 2. Stability of Functional Equation 1.4 in Quasi-Banach Spaces For simplicity, we use the following abbreviation for a given mapping f : X → Y : Df x1, x2, . . . , xm m ∑ i 1 f ⎛ ⎝mxi m ∑ j 1,j / i xj ⎞ ⎠ f ( m ∑
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملStability of Cauchy Additive Functional Equation in Fuzzy Banach Spaces
In this article, we prove the generalized Hyers–Ulam stability of the following Cauchy additive functional equation
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملStability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces
and Applied Analysis 3 for some natural number n0. Moreover, if the second alternative holds, then i the sequence {Jnx} is convergent to a fixed point y∗ of J ; ii y∗ is the unique fixed point of J in the set Y : {y ∈ X | d J0x, y < ∞} and d y, y∗ ≤ 1/ 1 − L d y, Jy , for all , x, y ∈ Y . Following 30, 31 , we recall some basic facts concerning multi-normed spaces and some preliminary results. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.03.039